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;: SUMMARY

! Site Characterization represents an important part of

the Air Forces's effort in MX missile siting. Decisions about

MX design parameters relating to survivability and hardness

X requiré estimates of subsurface soil properties, particularly
compressibility. Such information is usually available only
after a lengthy and detailed program of boring and testing
undisturbed core samples has been completed. This report
illustrates the use'of modern statistical analysis to estimate

2 ' subsurface soil compressibility, thus permittin§ substantial

H cost reductions in the sgite characterization effort,

The objective of the analysis is to investigate a number
of geographical, geologic, and engineering variables which
characterize a site, and to establish which among these will
provide useful predictions of subsurface compressibility.

An extensive geotechnical data base for Ralston Valley, Nevada,
has been assembled as a result of subsurface exploration and
laboratory testing by the U.S. Army Engineer Waterways Experiment
. Station. This somewhat unique set of data provides a basis for
statistical analysis and modeling, seeking relationships by
which compressibility may be estimated, using other, more easily

measured site characteristics, The analysis emphasized

compressibility at a depth of ten feet.
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¥ A first observation before addressing such data is that

if compressibility is relatively homogeneous throughout a

Lokt

valley, prediction at any potential site is greatly simplified.

&

The Ralston Valley data, however, showed that near-surface
compressibility varies greatly among sites and borings scattered
throughout the valley. Accordingly, information about individual

B0 K o R

sites must be taken into consideration.

It is possible to describe a potential missile site in

a

terms of information obtained from a map, using slope, elevation,

e Y i e

surficial soil type, and so on. Using a composite of these map

variables, it was found that the sites on the valley floor,with

ar

the predominant surficial soil type found there; had significantly
different stress~-strain relationships than sites above the

s s .4 8.0 &

valley floor having a different surficial soil type. Accordingly,

a result of the statistical approach employed is that prediction

o of near-surface compressibility appears to b; substantially
improved by consideration of a site's location and surficial

5 soil type. For example, mean compressibility at a four

; megapascal uniaxial loading was found in the data to be 3.83

for sites on the valley floor with surficial soil type 5Y,

and 4.69 for higher sites with soil type 5I. Thus it appears

that we can improve our ability to estimate near-surface

compressibility by simply taking into account site characteristics

from a map.

b Bag samples removed from borings provide gradation infor-

mation about subsurface soils. From the Ralston Valley data it
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was found that measures reflecting the dispersion of particle

size showed promise as predictors of compressibility. Measures
locating the gradation curve (reflecting particle size), on the
other hand, appear to have little connection with compressibility.
For sites on the valley>floor, a useful predictor of compress-
ibility was found to be specimen porosity, with the property
that the greater the stress, the better the prediction of
strain. As can be seen, the effects of site location were
found to be pervasive in the Ralston Valley data.
In addition to sampling via borings, an extensive program
of seismic surveys had been completed in Ralston Valley.
However, data that was examined from this seismic work proved
to be unrelated to the compressibility data from ten-foot depths.
These findings were obtained from a somewhat methodical
first look at the Ralston Valley data, and pertain only to
uniaxial strain compression at depths of ten feet. Never-
theless, it is believed that the statistical analyses reported
here contribute to our understanding of subsurface soils in
valleys such as Ralston Valley, and accordingly may help

reduce the cost and effort of gsite characterization for

MX missile siting. Accession For
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SECTION 1

INTRODUCTION

Information about geologic and material properties at
candidate sites is a necessary input to the Air Force site
selection process for the MX missile system. Soil character-
istics may significantly influence system design parameters
relating to vulnerability and hardness. Acquisition of soil

property data exclusively through laboratory tests of core

. samples from borings is probably not feasible, if a moderate

to large number of sites are considered. On the other hand,
laboratory testing of bag samples or undisturbed core samples
offers levels of accuracy which are generally not available
with other current methods.

It would be advantageous if some of the soil property
values which are sought could be predicted at desired levels
of accuracy from easily measured geologic and material char-
acteristics of the sites, so that sampling, involving costly
boring and laboratory testing of uﬁéisturbed core samples,
could possibly assume more of a confirmation role in a site

characterization effort. 1In particular, predictive relation-

ships linking near-surface compressibility to other site cnar-

acteristics could greatly reduce the time, effort, and conse-

quential cost to assess and characterize a potential site.
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This report describes the results of a variety of

E analyses seeking spch relationships; The approach employed

§ is that of statistical analysis and data-based modeling, |

A primarily employing linear and non-linear regression analysis
‘i in an interactive mode. The data base was furnished by the

é Structures Laboratory of the U.S. Army Engineer Waterways

s Experiment Station, and was the product of an extensive

‘S program of collecting and testing samples from Ralston

is Valley, Nevada.

'; Although we shall present a number of results which

3 are of interest in their own right, our emphasis shall be

; on the prediction of near-surface'compressibility; Compress-

= iliéz ‘as used here refers to the uniaxial stratn obtained

% at various. stress or load valuea for an undisturbed core

§ sample from a ten-foot depth. Primary attention will be

.: given to E4, the strain which occurs at a loading compression
g stress of 4.0 megapascals.

3

iz ' The Data Base

o During the period 1979-1981 considerable effort was ex-
i pended on the collection of soil samples and other data from
.% Ralston Valley, Nevada, and on laboratory testing and analysis
N of the samples. The data collection plan1 called-for sixteen
;§ sites in the valley to be investigated through seismic testing
.

together with removal of bag soil samples and undisturbed core

samples from borings. Sampling work was completed in 1980 and

by mid-1981, results of the seismic work2'3'4 and the laboratory
10
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tests on soil samples 5,6,7 had been completed. Most

R YT %]

importantly, all of this information was assembled in a

comprehensive information storage and retrieval system at <§
¢ the U.S. Army Engineer Waterways Experiment Statione. :
y A subset of this vast amount of data, dealing with §
general site characteristics and compressibility at ten-- é
foot depths, was extracted and used for the statistical g
analysis reported here; N
The first statistical effort was to ignore specific ;

site differences and treat the Ralston Valley data as one é
large sample. Results of this initial work are given in ?
Section 2 of this report, together with consideration of i
statistical modeling concerns with independence and ?
norﬁality in dependent random variables. by
Compressibility was the primary dependént variable 5

in the analysis, and in seeking to estimate or predict i
compressibility, all other measures were treated as ?
independent variables. Of these, seismic and soil ;
measures were necessarily considered to be stochastic. 3
Classes of Independent Variables 5
Independent variables (as potential predictors) é

r

L

were classified according to the cost or effort required
to obtain values for them, and each class was investigated
. separately. Classes of independent variables were, in

order of increasing cost, map variables, seismic measures,

bag-sample measures, and undisturbed-sample measures.

11
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¢ Map Variables are those site properties for which values

may be obtained from a FUGRO map of the valley under consider-
» ation. Results of analyses to determine if these variables
could be used as predictors of near-surface compressibility
are given in Section 3 of this report.

Seismic measures are those available from a seismic
survey done at the site, and results of analyses pertaining
to these variables (compression-wave velocity and surface
layer thickness) are given in Section 4.

Bag Sample measures provide information on soil
gradation, and results of studies seeking relationships
between gradation measures and near-surface compressibility
are given in Section S. .

Undisturbed—Sggéle measures are among the most
costly to evaluate in the data base, since samples
must be carefully removed from the boring, protected,
and transported to the laboratbry for testing. This is,

AL

of course, part of the procedure necessary to actually

v
.8 8 8

measure compressibility, but at this point it is still
possible to measure the porosity of the specimen without

A 1 1A

the added cost and effort of uniaxial strain tests. Accord-

? ingly, statistical analysis was undertaken seeking a
relationship between compressibility an& porosity, with
results presented in Section 6 of this report.

< The report ends with a discussion of the conclusions from
‘ these analyses. Selected numerical details are furnished in the

5 Appendix,
J 12
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SECTION 2

GENERAL MEASURES FROM THE
R RALSTON VALLEY DATA BASE

Our first results from work with the data from
ﬁallton Valley examine what can be said about porosity

[N

(?RSTY), dry density (DDEN), and compressibility at loads
of 2.0, 4.0, and 6.0 megapascals (E2, E4, and E6) by treat-
ing the data as one large sample without rggafd to other
.- information we have about the sites. Ve shall also comment

on normality and independence of individual observations.

General Estimation of Soil Measures
2 Subsequent sections will discuss ways in which site
characteristics, seismic data, and gradation information can
assist in improving estimates of compressibility in MX
valley soils. As a starting place, however, it is useful to
; see how well one might do in estimating without using infor-
' mation from maps, bag samples, and so on. Accordingly, in
' this secgion we shall ignore other information that we have
and treat the data as being simply from fifty-eight borings
in Ralston Valley. From this, we shall attempt to make

~
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general statements about near-surface compressibility in
the valley. A list of the fifty-eight borings from which ’
data is used is given in the Appendix to this report, Table 23.

ey en—pn—. - L

Treating the data as a random sample from the valley as
a whole, values of standard statistical estimators were com- E
puted for E2, E4, E6, PRSTY, and DDEN at a depth of essentially :
10 feet. These are displayed in Table 1.

TABLE 1. Estimated means for E2, E4, E6, PRSTY,
and DDEN at 10' depths in ‘Ralston Valley. (n=58)

3 Aahe—

Estimated mean value of E2 . . . . . . . 2.70
958 confidence interval, mean B2 . . . . 2.41 - - 2.95

- vy

Estimated mean value of B4 . . . . . . . 3.94

95% confidence interval, mean E4 3.56 - - 4.33 y
Estimated mean value of E6 4.92

95% confidence interval, mean E6 4.46 - - 5.37

Estimated mean porosity 0.355 \
95% confidence interval, mean PRSTY 0.345 - - 0.366 s
Estimated mean dry density - 1.70 :
95% confidence interval, DDEN 1,68 - -~ 1.73 t

The statements in Table 1 refer only to average values

for the valley as a whole. Our sample of size 58 is ample
to provide fairly good confidence limits on these average
values, but our ability to forecast compressibility at a 3

particular site in the valley will depend upon variance.

X
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Table 2 shows medians and sample'variance for the various
measures. If we wished to forecast E4 at a 10' depth at -

a parficular site in the valley, the goodness of our forecast *

TABLE 2. Medians and Sample Variances for E2,
E4, E6, PRSTY, and DDEN at 10' depths. (n=58)

‘ "
N Measure Median Variance :
E2 2.70 1.12 ¥
E4 4.07 2.16 ;
E6 5.20 3.12 X
PRSTY ” 0.348 0.0016 g
DDEN 1.72 0.0098 -
3
would be reflected by its variance; it is the purpose of é

examining site characteristics to reduce this variability.
On the basis of these 58 borings, we would forecast 1
that if undisturbed samples were taken at 10' depths in S
'3

Ralston Valley, measured values of E2, E4, E6, PRSTY, or'!
DDEN would fall within the 95% limits shown in Table 3. g
2
TABLE 3. 95% Limits for Individual Vvalues ’
of E2, E4, E6, PRSTY, or DDEN.
Measure Forecasted 95% Intervals e

E2 0.93 - = - 5,04

E4 1047 - - - 7.22 »
E6 1.66 - = - 9.55 '3
Y DDEN 1.51 = = = 1.90 S
\ 15 5
;
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The forecasting performance reflected by the values in
Table 3 is a direct consequence of the standard deviation
values shown in Table 2, which include variability caused
by surficial soil types and site locations, soil gradation
differences, and inherent soil heterogeneity together with
the variability that is added dAuring the process of gathering
and testing soil specimens. Variance due to the latter source
is of unknown magnitude, but represents a lower bound
on residual variancesobtainable when we try to reduce

variability using information about site and soils.

Some caution should be exercised in interpreting the
values shown in these three tables. What we properly have :
N here is multivariate data from fifty-eight soil specimens,
'l and it is well known that E2, E4, and E6 are highly

correlated, as are PRSTY and DDEN. Accordingly, the

The 95%

FAE
R A AR

intervals shown for these measures are related.

intervals shown are for E2 or E4 or E6.

Spatial Clustering

Thus far we assumed that the fifty-eight borings were

scattered randomly through the valley. Actually, it is

sixteen sites that are scattered through the valley, although

" we know that the sites were not chosen in a truly random

manner.

What is of interest here is that the borings are

clustered at each site, so that we have two, three, or

four pieces of information at each site. The sites

16
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are physically distant from one another, while the borings
at a site are not.

An important consideration when undertaking a data
study of this kind is the independence of the individual
observations, and in this regard, it is useful to have some
assurance that data from adjacent borings may be considered
independent. Site RASY was one of the two sites in Ralston
Valley where extensive boring was done, and the boring plan

at this site provided one set of borings at 62.5' spacings,

-~

and another (but not mutually exclusive) set at 7.8' spacings.

One measure of spatial independence is a small correlation
between adjacent borings: in this case one would hope that
observations taken at equally spaced positions in a line

are not correlated with next neighbors. Sample correlation
coefficients for various measures from the two boring sets
at Site RASY are shown in Table 4. Samples are small‘here,‘
and a significant sample correlation coefficient would in

this case be of the order of 0.5. Clearly, there is little

to suggest problems due to spatial effects.

TABLE 4. Correlations between Adjacent Borings
at Site RASY.

Variable 62.5' Spacing (n=15) 7.8' Spacing (n=14)
E4 ’ 0.08 0.15
DDEN 0.05 0.11
17
J"'J""J" A ‘, ‘, P ?w.s}-u'. , ‘,-'.,, ,'s ALY \*\;x \‘ - LA Ny -J RN
* »ss ) Tela s WS s
SOy ATl s ’ \ }3{;-»}'31 T R :m&ah&a:.m &

7 W ol TGl B Wy

Vs T ol ain

N S WETE 2

L 5



Normality in Compressibility

. Many of the data-based modeling procedures which will
;: be used laterin this report assume a normally-distributed
dependent variable. While in most cases these procedures
are somewhat robust in coping with moderate non-normalityg'lo,
?) it is useful to take a closer look at our dependent variable
in this regard. Strain is computed as the ratio of deflec-
tion to original specimen size. As such, we have here a
random variable clearly bounded on the unit interval, but

not a random variable of Bernoulli trial origins.

Discussions with engineers at Waterways Experiment

Station indicated that specimens undergoing uniaxial strain

~

.: tests will be essentially the same initial size, so that

i one may view strain not unreasonably as the product of

§ a single random variable and a constant, rather than as

g the ratio of two random variables. The bulk of thé densityk

, will be at the lower end of the unit interval, and one

? might therefore expect moderate positive skewness. This

‘; was investigated descriptively using stemleaf plots, and

;i the skewness noted was modest.

‘2 Transformations provide one well-known statistical

5 tool for reducing skewness; Much of the statistical work
with the Ralston Valley compresaibility data was done

a twice: with, and without transformations. Since results

3 never differed appreciably, only the untransformed

-

versions will be presented here.
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Conclusions

In this section we have treated the data as simply a

i single sample from the valley, without regard for site

% 55 P PN AP

differences within the valley. This first look at the
Ralston Valley data provides a larger sample to work with

than we will encounter later. On the other hand, it is

clear that the variance of compressibility is large under
this approach; it is now the task to see how much of this

variance can be accounted for by known site and specimen

-'.
. 4
: characteristics. In the next section we will look at R
o
easily obtained information from maps, to see if know~ &
ledge of these factors will reduce our variance in esti- f
. mating compressibility. )
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SECTION 3

MAP VARIABLES AS PREDICTORS

OF NEAR-SURFACE COMPRESSIBILITY

Maps, such as those available from FUGRO, offer a
variety ofvinformation relating to the physical characteristics
of potential sites. Because this information may be obtained
more easily than that requiring seismic surveys or boring
efforts, it is of particular interest to attempt to determine
if there are relationships between near-surface compressibility

and site characterizing information available from FUGRO maps.
As measures of near-surface compressibility we shall

use E2, E4, and E6, denoting the uniaxial strain at loading
stresses of 2, 4, and 6 megapascals, respectively. However,
since these three measures are so highly correlated, the
results for E4 will usually suffice. As elsewhere in this
report, results pertain to depths of ten feet.

Using data from fifty-one borings at fourteen sites in
Ralston Valley, we seek relationships between near-surface
compressibility and the following map variables:

1. ELEV: the site's elevation, in meters;

2. SLOPE: the surface slope at the site;

. EAC: the site's elevation above the valley floor,meters;
. DCV: the site's distance from the valley center, km;
DFM: the site's distance from the mountains, km;

DEP: the site's distance from the edge of the playa, km;
the surficial soil type at the site, S5Y, 5I, or U.

20
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In statistical analysis, two or more factors are said to
be confounded if the data is such that it is not possible
to test for the individual effects of the factors. This was
the case among many of the map variables in the Ralston Valley

data set.
This section first describes the confounding problem and

its resolution, and reports statistical work exploring the
effects of site type on E4. Then, within each site type, we
may look for effects of previously confounded variables on E4.
In all of this, data from fourteen of the sixteen sites in
Ralston Valley is used: data for the remaining two sites is

reserved to test any predictiée relationships found.

Confounding of Surficial Soil Type with Other Variables

Among the fourteen sites in Ralston Valley from which
data was used, nine sites have been identified as having
Type S5Y surficial soil, four sites as having Type 5I surficial
soil, and one site as having Type U soil. This corrected
classification is substantially different from the one upon
which the data collection effort was based, where sites were
distributed among four surficial soil types.

We wish to look first at surficial soil type as a
basis for forecasting E4, but unfortunately in this data,
surficial soil type is confounded with four other independent
variables: EAC, SLOPE, DFM, and ELEV. In Figure 1, the top
scale locates the fourteen sites in terms of EAC, their

elevations above the center of the valley. It is easily

21
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seen that the 5Y and U sites are all on or near the floor of
the valley, whereas the sites with surficial soil type 5I are
not. Accordingly, we are unable to separate surficial soil
type and EAC in terms of their effects on compressibility.
Similar confounding with surficial soil type may be
observed in Figure 1 on the second scale, SLOPE. The
distance from the mountains DFM is also confounded with soil
type, as shown by the third scale in Figure 1. Finally, it
is clear fron the fourth scale thatone would have difficulty
determining whether an effect on E4 was really due to soil
type, or to the elevation at the site. Accordingly, we have
four of the site variables confounded with surficial soil type
in the sense that for statistical analyses, we cannot separate

them from surficial soil type.

Site Classification

Because of the confounding of surficial soil with four
of the site variables we are considering, it will not be
possible to make a general statement about any relationship
between soil type and near-surface compressiﬁility, independently
of these site variables. What can be done, however, is to
classify the Ralston Valley sites on the basis of surficial
soil type and other factors, and then check to see if site
types differ in E4. The site classification scheme is shown in
Table 1. (The data for each type of site is given in the

Appendix.) _ -
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TABLE ‘5. Classification of Sites

SITE CLASSIFICATION

Type 1 Type II Type III

Surficial Soil 5Y 51 U

EAC, meters 0 - 20 35 - 75 9
SLOPE, % 0 - 2.5 2.5 -~ 3.0 0.5
DFM, km 1.5 - 10.5 0 - 2.5 3.6
ELEV, meters 1580 - 1710 1670 - 1780 1600

# sites 9 4 1

# borings 34 13 4

From Table 5 we see that Type I sites are on or near the
floor of the valley, on relatively flat land away from the
mountains, with surficial soil type S5Y. Type II sites are
on higher, more sloping ground with surficial soil type 5I,
and are closer to the mountains than Type I sites. The Type
III site is primarily distinguished from Type I sites because
the surficial soil is U, rather than 5Y.

Effects of Site Classification on Near-Surface Compressibility

The first factor we shall investigate in terms of impacting
values of E4 is site classification, as described in the pre-
ceding section.

Analysis of variance showed that among the three site

types, mean E4 differed significantly at the 0.01 level. (The

24
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same is true for E2, E6, E4-E2, and E6-E4. Since these

L7

measures correlate so highly with E4, we will simply emphasize

E4 in this analysts;) Sample means and other measures are

o A M

given in Table & Variances of E4 differ significantly among
the site types; Among pairs of means, mean IE4 is éig—
. nificantly different from mean IIE4 at the 0.05 level, and
% significantly different from mean IIIE4 at the 0.001 level
(Aspin-Welch teStsI;

We may also compute 95% confidence intervals for mean

values of E4; these are displayed in Table 7.

TABLE 7. Ninety-Five Percent Confidence
-3 Intervals for Mean E4

e At Type 1 sites: 3.26 - - 4.40
At Type II sites: 4.19 - - 5.20
At Type III sites: 1.44 - - 2.50

Effects of DCV_and DEP on Near-Surface Compressibility

Two site characteristics which were not confounded
with soil type in this data are site's distance from the center
of the valley, DCV, and the distance from the edge of the playa,
DEP. Confounding probléms between these two variables are not

as evident as in the case of surficial soils. As shown in {

AR |,

Figure 2, there is a distinct confounding for the Type II sites,
and for all sites (with the exception of one, RC4U) those nearer

the playa tend to be further from the center of the valley.

APV

This may be partly due to the shape of Ralston Valley at its
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Southern end. We shall examine DCV and DEP separately, and
for now, independently of site type. .

LA A

Investigated independently of other site characteristics,
neither DCV nor DEP appear to have a significant effect on
3 near-surface compressibility; coefficient of determination

values of (¢.006 and 0.088 were obtained.

(RN

N Effects of Site Characteristics Within Site Types

‘z It is useful to look at the effects of such site char-

3 acteristics as ELEV and SLOPE as they vary within a site

63 classification. Such an analysis, however, is hampered by

é several factors. First, in each analysis we will be able to

% explore only a limited range of values for the characteristics
; of interest.- Second, the results of the analysis must be'

3 qualified by site classification. Third, we may find further
3 confounding of some characteristics within site type. Finally,
& sample size drops substantially. We will not be able to say

5 anything about the Type III site since there is only one, and
E even at Type II sites, relationships must be based on four

3 sites, meaning only four values for each independent variable.
} Among the nine Type I sites, ELEV and DEP are clearly

5 confounded, as shown in Figure 3. Also, since these sites

.: are all close to the valley floor, there isn't much difference
ii among them in terms of EAC. If we do pay attention to EAC,

i§ we find that among Type I sites, it is confounded with SLOPE,
h as shown in Figure 4. Thus within the Type I sites we have
3 28
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available just four variables:

1. EAC or SLOPE
2. ELEV or DEP
3. DFM

4. DCV .

Tentative exploration of the effects or influence of these
variables on E4 within Type I sites shows that none of

these factors has a significant effect on E4.

WS R0 5 e, ARG ICOT s 53

Among the four Type II sites, the ground slopes are
all about the same, as are the distances from the mountains.
This was shown in Figure 1, where it also is evident that
ELEV, DFM, DEP, and DCV are all confounded for Type II sites.
Accordingly, among Type II sites we are able to explore the
effects on E4 of essentially two independent variables:

1. ELEV or DEP or DFM or DCV

2. EAC.
Exploratory regression analysis failed to show signs that
these factors might be useful as predictors of E4 at Type II
sites. Here, as in previous work, residuals were inspected
(without success) for signs that nonlinear analysis would be
appropriate.

The Type III site, RDU, has been previously shown to

have significantly smaller values for near-surface compres-

‘O Sy PuPu TA BN

sibility than Type I sites. One interesting comparison is
afforded by comparing this site to a similar Type I site, so

that differences found could be attributed to surficial soil.
31
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Site RCU, classified as Type I, is similar to Site RDU as

shown in Table 8 below. Although sample mean values for E4

TABLE 8. Characteristics of Sites RDU and RCU

Site RDU Site RCU
Surficial Soil Type U 5Y
EAC, meters 9 0
SLOPE, % 0.5 N.43
DFM, km 3.6 . 3.75
ELEV, meters : 1620 1585
DEP, km 5.5 1.2
DCV, km 8.4 6.0
Mean E4 1.97 3.21
variance of E4 0.11 2.48
# borings .4 4

appear quite different, sample sizes here are too small to
permit statistical confirmation. (The Aspin-Welch t-statistic

for E4 means is -1.54 with 3.26 degrees of freedom.)

]
[

o

Conclusions

(Yl
.

1. We are unable to show from this data that E4 at

- v
A0

ten-foot depths is influenced by the site's distance from the

A I
.

Y\ G

o 8

.

center of the valley, or by its distance from the edge of the

(A

»

playa.

-

E: 2, Type 1 sites (on or near the floor of the valley,

EI on relatively flat land with surficial soil Type 5Y) have

P

D a significantly smaller but more variable value of E4 than

I‘.: .

3. Type II sites (on higher, more sloping ground, closer to the

E: mountains with surficial soil Type S5I.)
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3. A Type II1 site (different from the general charac-
teristics of Type I sites in that the surficial soil is Type U)
has significantly smaller and less variable values of E4 than
Type I or Type II sites.

4. Within site types, we were unable to show from this
data that any of the following variables had any effect on
Ed:

Site elevation

Site elevation above valley center

Slope at site

Distance from the mountains.
However, because of confounding with other site characteristics,
we cannot give from this data a general result about the effects
of these factors on E4.

5. All results cited above also hold for E2 and ES6.

6. Computed 95% confidence intervals on mean compressibility
measures are given below: 4

Mean E2 Mean E4 Mean E6

Type I Sites 2.19 - 2.97 3.26 - 4.40 4.11 - 5.49
Type III Sites 0.86 - 1.78 1.44 - 2.50 1.94 - 3.06

The next section will give the results of analyses looking

U . S

at the use of data from seismic surveys to forecast near-surface

compressibility.
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SECTION 4

f] U o% % PR PR %

COMPRESSION WAVE VELOCITY AND SURFACE LAYER THICKNESS

AS PREDICTORS OF NEAR-SURFACE COMPRESSIBILITY .

Seismic testing provides information about a site that i
includes estimates of the depths of material layer boundries

and estimates of compression wave velocity in the material,

--® o -
L) .

as a function of depth. During planning for the Ralston

N MR g

Valley effort, seismic surveys were considered to offer .

A A

= promise as a way to predict near-surface compressibility,

(]
- -
v, v,

- in that it was hoped that seismic measures and compress-
. ibility would be related, at least in a statistical sense.
- In the data set used in the analysis reported here,
measures from seismic survey lines at fifty-one borings
in Ralston Valley were employed. In most cases these )
survey lines passed within one foot of the center of the .
- boring. Additional seismic work at two sites, RBU and :
' RB5Y, had included three lines which were oriented to
be 60° apart, in a spoked wheel configuration. Analysis
of variance studies of the seismic data from these

lines was undertaken to see if the seismic results for

e % « ol
% Y N Y

a point varied due to the compass orientation of the survey

9=y W 3 _F.V

line, and no significant effects were found.

2
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General Results

Values of three seismic measures were used:

CPSURF: The compression wave velocity in the
surface layer, mps.

o S LA

CP10: The compression wave velocity at a
depth of ten feet, mps.

ZBOT: The thickness of the surface layer,
meters.

AL 871 %

The first three columns in Table 9 show overall means F

and standard deviations for the three seismic measures. N

TABLE 9. General Results for Seismic ht
Results from 51 Borings. ,

CPSURF ' CP10 ZBOT
Sample Mean 372.1 711.9 1.18
Std. Dev. 56.0 134.6 0.54

TABLE 10. Correlation Coefficients among
Seismic Measures and E4.

cr10 ZBOT E4

CPSURF 0.26 0.28 -0.09

CP10 1.00 0.38 0.01

ZBOT 0.28 1.00 -0.08
From the right-hand column in Table 10 we can see that the
sample correlation values between E4 and the three seismic
measures are so small as to be essentially negligible.
This implication that, in general, the values from seismic -
surveys have effectively no connection with E4, was supported

by inspection of scatter plots and multiple linear and non-

35
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linear regression attempts. (The latter yield, for example,
coefficient of determination values of 0.012 for a linear

function and 0.014 for a power function.)

Effects of Seismic Measures Within Site Types

It was pointed out in a previous asgcticn that SEEE
variables could be handled for statistical purposes by
classifying sites in Ralston Valley, and it was found that
. F4 varied significantly among Type I, Type II, and Type III
sites. Accordingly, it is of interest to see if seismic
measures vary among site types, and more importantly, to see
if we might find relationships between compressibility and
these measures, within site types.

Means and standard deviations for seismic measures
within site types are shown in Table {} together with E4
values for comparison. Analysis of variance results show
CP10 values to differ significantly (5%) among site types;
values of CPSURF and ZBOT do not. One may also note from the

TABLE 11.Means and Standard Deviations for
Seismic Measures Within Site Types.

;;;; n CPSURF  CP10 ZBOT  E4 _
I 34 X  368.9 698.3 1.08 3.83
8 32.9 115.4 0.47 1.62 R
II 13 x  383.1 782.7 1.26 4.69 =
s 98.4 166.3 0.64 0.84 o
IIT 4 X  363.5 597.25 1.75 1.91 >
s 29.1 59.0 0.44 0.33 =

v

s
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table that sample means for CPl0 agree in ranking with those

for E4.

Conclusions

In view of the high hopes that seismic measures would
be related to near-surface compressibility, these statistical
results must be termed very disappointing. Despite lengthy
analysis using linear and nonlinear regression, none of the
three seismic measures investigated (CPSURF, CP10, and ZBOT)
showed any evidence of being related to near surface compress-
ibility.

In the next section we will devote attention to data from
bag samples of material taken from borings as possible pre-

dictors of compressibility.
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SECTION 5

SOIL GRADATION AND NEAR-SURFACE COMPRESSIBILITY

Bag samples of material removed from borings at various
depths provide an estimate of the frequency distribution of
particle size in the material. The subject of this section
of this report is the analysis of such gradation data from
Ralston Valley, and its relationship to compressibility

E4 at ten-foot depths.

Gradation Measures

This work used gradation data from bag samples from
approximately ten-foot deptha at 51 borings in Ralston
Valley. Two primary measures we used:

D10 -~ - the 10th percentile sieve size, and

D50 - - the median sieve size.

Additionally, three candidate measures of dispersion were

oy

explored as single predictors of compressibility:

LIRS ot ]

D50 - D1lO,
D10/D50, and
D50/D10 .

Also examined were the Burmister parameters computed from

3
:
]
4
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the sample gradation curves:

LCR - - the parameter related to the slope of the
gradation curve, and

CRD100 - - the parameter locating the gradation
curve, and

o A

CRD100/LCR.

Table 12-shows sample correlation coefficient values :
[}
for these measures together with sample means and standard :

deviations. The sample correlation coefficient value of

1.0 is due to rounding, but tells us that D50-D10 is i
S repeating the information provided by D50. The is probably é
f_ because D10 is very small relative to D50. The correlation ;
:’ values of 0.98 between CRD100 and CRD100/LCR 1is probably due 5
\ )

N to the comparatively small standard deviation of LCR. From
this, we shall drop D50-D10 and CRD100/LCR from further

consideration and concentrate on the remaining measures.

R i s

L

Relationships Between Gradation Measures and Near-Surface

. &

Compressibility

s V.9
o« wa s

% Our basic measure of near-surface compressibility will

continue to be E4. Earlier work showed that E2, E4, E6,
DELE4 = E4-E2, and DELE6 = E6~E4 we all highly correlated

in a collective sense. These measures all correlate to about

R IM PN 8 4

; the same extent with D10/D50, with values -0.35, -0.37,
-0.38, -0.36, and -0.34.

- In the right-hand column of Table 13 we see sample

correlation coefficient valueé between compressibility E4

and six candidate gradation measures. The ratio D10/D50 K
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TABLE 12. sample Correlation Coefficients
Among Gradation Measures, n=5l1.

D50 D10 D50 CRD100
D10 D50 -D10 D50 DI0 CRD100 LCR _LCR

D10 1.00 0.46 0.40 0.50 -0.29 0.54 0.05 0.58
D50 1.00 1.00 -0.05 0.19 0.74 0.14 0.84
D50-D10 1.00 -0.09 0.22 0.72 0.14 0.82
D10/D50 1.00 -0.49 0.00 -0.31 0.01
D50/D10 1.00 0.09 0.08 0.09
CRD100 1.00 0.59 0.98
LCR 1.00 0.50
Means 0.06 1l.15 1.09 0.06 48.04 24.01 5.45 3.90

Std. Dev. 0.12 1.51 1.46 0.07 55.77 29.46 1.15 4.39

Medians 0.02 0.54 0.49 0.03 30.50 11.78 5.60 2.26

"TABLE 13. Sample Correlation Coefficients
Between Gradation Measures and E4. /

D10 DS0
D10 D50 D50 bID CRD100 LCR E4
Dlo 1.00 0046 0050 -0029 0.54 0005 -0-04 .
D50 1.00 -0.05 0.19 0.74 0.14 0.16

D10/DS0 1.00 -0.49 0.00 ~0.31 -0.37

D50/D10 l1.00 0.09 0.08 0.33

CRD100 1.00 0.59 0.09

LCR 1.00 0.18
40
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and its reciprocal show promise as single predictors of E4,
and we shall explore both of them before choosing one or the
other.

Although the sample correlation coefficient values of
-0.37 and 0.33 are, with 51 observations, substantial enough
to capture our attention, scatter plots of D10/D50 vs E4
(Figure-ﬁ) and D50/D10 vs E4 (Figure %) are not particularly
encouraging as to the worth of this measure in predicting
E4. Treated individually, these plots suggest that relations
other than linear should be explored. An example is given
in Figure‘?‘by the scatter plot of (DlO/DSO)o’5 vs E4.

Using regression analysis, a number 6f functional
relationships between E4 and D10/D50 and between E4 and
D50/D10 were explored. For functional forms where it made
a difference whether one used the independent variable or
its reciprocal, D10/D50 was superior as an independent
variable. Remaining candidate functions are listed in
Table 14, together with a summary of statistical performance
from nonlinear regression analysis.

With proper parameters, each of the functions listed
in Table 14 would serve as a basis for relating mean E4 to
D10/D50, as indicated by the significance levels on the

F statistics; On the other hand, none of the functions

offer a truly substantial reduction in variability, as
indicated by the values for the coefficients of determination.
Also, standard errors, where comparable, show little

difference.
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TABLE l4.Statistical Results from Linear
and Nonlinear Regression Analysis.

Values marked (*) are comparable only to each other.

Values marked (**) are not comparable to other standard
error values shown.

Function, where Signif Coeff. of Standard
y = mean E4 F d.f. Level Determ. Error

Linear:
y=a+b (D10/D50) 7.68 1,49 1% 0.136 1.447

Product:
y=a (D10/D50) P 7.27 1,49 1% 0.129 0.393"

Reciprocal:
y=a+b (D10/D50) "1 5.80 1,49 2.5% 0.106 1.472

Square Root: )
y=a+b(D10/D50)%*5  g.05 1,49 1% 0.141 1.442

Quadratic:

y=(a+b(D10/D50))2  8.76 1,49 0.5% 0.152 0.356" "

 Semilog: _
y=a+bln(D10/D50) 7.323 1,49 1% 0.130 1.452

¥

Exggnential:
y=exp (a+b(D10/D50)) 9.91 1,49 0.5% 0.168 0.384"

Cubic:

y=a+b (D10/D50) 2.582 3,47 10% 0.141 1.472
+c (D10/D50) 2
+d(D10/D50) 3

TSRO O U TR A

5 e Y v ¥ "




If one proposed to use D10/D50 as a predictor of E4,
three possible functions selected from Table 14 might be
the linear form (for simplicity), the exponential form‘
(because it looks best in this group), and the quadratic
form (because it is second best). From the regression
analysis the three possible prediction equations for
mean E4 would be

E4 = 4.3863 ~ 8.1276(D10/D50) '

E4 = exp(1.4264 - 2.45(D10/D50)) v
and

E4 = (2.0672 - 2.1884(D10/D50))2 .
Ninety-five percent confidence limifs for mean E4 may

be approximated by

4.3863 - 8.1276(D10/D50) + (2.013) (1.447) \[ g(D10/D50

for the linear form,

exp(i.4264 - 2.45(D10/D50) :l(2.013)(0.384)4{ g(D10/D50) )

for the exponential form, and

2
(5.0672 - 2.1882(D10/D50) + (@.013)(0.356)4{79(010/D50) ) '

for the quadratic form, where

g(D10/D50) = 1/51 + ((Dl0/D50) - 0.05942)2/0.24345 .

Examples of mean E4 forecasting using the ratio D10/D50
are given in Table 15 together with results ignoring D10/D50.
Here, three cases (identified by quartiles of D10/D50) are
examined and for each case, point estimates of mean E4

and 95% confidence limits are given.
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TABLE 15. Examples of Forecasting Mean E4
Using D10/D50.

Case 1 Case 2 Case 3
D10/D50 0.0177 0.0328 0.0834
A. Forecast ignoring
D10/D50:
Point Estimate 3.90 3.90 3.90

B. Forecast using

b the linear form:

- Point Estimate 4.24 4.12 3.71

i 95% Conf. Int. 3.77 - 4.72 3.68 - 4.56 3.28 - 4.14

o C. Forecast using

- exponential form:

Point Estimate 3.99 3.84 3.39

95% Conf. Int. 3.51 - 4.52 3.42 - 4,31 3.03 - 3.81

D. Forecast using
quadratic form:
Point Estimate 4.12 3.98 3.55
95% Conf. Int. 3.65 - 4.60 3.56 - 4.42 3,16 - 3.96
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Forecasting E4 Using D10/D50 and Other Measures

Now that we have D10/D50 as a single predictor of mean E4,

it is of interest to go back over other gradation, seismic,

Pt 2l X e

and site measures to see if they will as an added dimension

improve forecasting performance by D10/D50. Using multiple y
regression analysis the following were explored: .
-
1. D10 and D10/D50

2. D50 and "
3. LCR and " .
4. CRD100 and " X
5. ZBOT and " .
6. CP10 and " e
7. DCV and " ¢
8. DEP and . " B
8. CPSURF and " . o
:.
With one exception, this work produced no substantially .
*
improved statistical results over forecasting E4 by D10/D50 g
using the exponential form. Adding variables, of course, .
always reduces degrees of freedom while making the fit appear E
better via the coefficient of determination. The one result %-

worthy of note is

" E4 = exp(a + b(D10/D50) + cD10) . R
. &
This function furnished a coefficient of determination of 0.226, ’
and was significant at the 0.005 level with 2 and 48 degrees of .
freedom. Coefficients were a = 1.1415, b = -3.286, and N

c = 0.975.

.........................
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Effects of Gradation Measures Within Site Classifications

Independent variables which remain to be explored in

conjunction with D10/D50 are those site variables which

Pa®y s s e

are confounded with surficial soil and each other in the

kg e

Ralston Valley data. Since E4 has previously been found to

vary significantly with site classification, it would be

I

useful to do multivariate analysis with both site classification

.
[ )

and D10/D50. Our approach will be to look for the effects

of gradation measures within site classification.

As explained in an earlier §§9§}Op, confounding of site
variables in the Ralston Valley data led to classification of

sites as Type I sites (on or near the valley floor, with v

) EEAAAD

surficial soil type 5Y), Type II sites (on higher, more

sloping ground with surficial soil type 5I), and Type III

"weht

sites (same as Type I, but with surficial soil type U). !
It was shown that E4 varied significantly among the site :
3 types, leading to the observation that site classification
N might provide one basis for forecasting E4.
A first question we might ask is whether any or all

of D10, D50, D10/D50, LCR, or CRD100 might vary significantly .
by site classification. Means, variances, and standard ;
deviations are shown in Table 16. If each measure is

& viewed individually, variances differ significantly from

Type 1 sites to Type II sites for D10, D50, D10/D50, and

LS SN Tl
- -

CRD100. Mean D10/DS50 is different between Type I and Type II

sites at the 5% significance level (Aspin-Welch test). S

LY ‘l:'.“.\..
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TABLE 16. Means, Variances, and Standard Deviations

o for Gradation Measures by Site Type.

b7

! Type I Type II Type III

Sites Sites Site
n=34 n=13 n=4
D10  mean 0.0728 0.0434 0.0437

variance 0.0195 0.0039 0.0020

. std. dev. 0.1395 0.0625 0.0447

» D50  mean 1.210 1.199 0.458

N variance 3.040 0.976 0.052

2 std. dev. 1.743 0.988 0.228

KN

> D10/D50 mean 0.06245 0.0334 0.118

~ variance 0.00506 0.0004 0.016

o std. dev. .0712 .0199 0.127

o

- LCR  mean 5.506 5.760 4.205
variance 1.467 0.836 0.316

. std. dev. 1.211 0.914 0.558

- CRD100 mean 28.110 19.053 5,229

= variance 1208.1 97.273 15.262

" std. dev. 34.76 9.863 3.907
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Sample correlation coefficients among gradation data
at Type I sites are shown in Table 17. Here it may be seen

that gradation measures in general and D10/D50 in particular

AR

have apparently a weaker relationship with E4 than they
- did with sites from the valley as a whole. With the reduced

sample size, we need higher correlation values to catch our

N
PP ISP PR

attention. Things look somewhat more promising at Type II

sites, as reflected by the correlation values in Table 18. .

"%

The distinction in site types is amplified when we

r v
(g}

look at the data using linear and nonlinear regression
analysis. Various functional forms which we previously o
explored for the valley as a whole were applied to data
from Type I sites, and to data from Type II sites.

Statistical results are summarized in Table 192, where

we see that nothing works very well at all at Type I

sites. At Type II sites, however, the nonlinear relationship

-pe

between E4 and D10/D50 becomes again apparent in this

’

‘..
o

subset of data, and in this case, a simple reciprocal

I

function works very well. Here, the function is

X, "

E4 = 4.2 + 0.0088(D10/D50) "% .

We will discuss these and previous results in the next

-
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TABLE 17.Sample Correlation Coefficients
Among Gradation Measures at Type I
Sites, n = 34.

D10 D50 D10/D50 CRD100 LCR _E4_
D10 1 0.43  0.55  0.54  0.12 -0.01
D50 1 -0.02  0.75  0.20  0.13
D10/D50 1 0.03 -0.24 -0.28
CRD100 | 1 0.65  0.06
LCR 1 0.07

TABLE 18.Sample Correlation Coefficients
Among Gradation Measures at Type II
Sites, n = 13

D10 D50 D10/D50 CRD100 LCR _E4_
D10 1 0.83 0.64  0.58 =-0.44 =-0.27
D50 1 0.19 0.64 =-0.54  0.07
D10/D50 1 0.24 -0.18 -0.42
CRD100 1 0.15  0.04
LCR 1 -0.07
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Conclusions and@ Discussion of Results

Among gradation measures considered, those locating

the gradation curve (D10, D50, and CRD100) appear to have A

B s

little connection with E4 as a single predictor. Among

¥ measures reflecting dispersion of particle size (CR, D50-D10, . )
.3_; D10/D50), the ratio D10/D50 was found to relate to mean E4 :
& in a statistically significant manner, although variance

- reduction was not large.

: The performance of D10/D50 as a forecaster of E4 was

E: improved by including D10 as a locating measure, in ‘
= accordance with i
2 Mean E4 = exp(1.1415 - 3,286(D10/D50) + 0,975D10) .
3 Inclusion of other measures (including seismic] did not j
i appreciably improve on this, E
R If we look within site classifications; the usefulness ;
X of D10/D50 decreases among Type I sites but improves at :
é Type II sites, permitting good forecasting performance i
2 with a simple reciprocal relationship i
Mean IIE4 = 4,2 + 0,0088 (IXD1a/TIDS0} !

- "
" From all this, it appears that at least this rough :
s dispersion measure is useful in forecasting mean E4. 1In :
A this study only D10 and D50 were used from the bag-sample ‘
2 gradation curves, and it is tempting to consider how

< dispersion measures based on additional information from Y
4
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the sahple gradation curves might perform.

Perhaps a word about the interpretation of these
results is appropriate here. It has been said of exploratory
data analysis that if you look long enough and hard enough,
you will always find something. Hopefully, we have been careful
not to go overboard in that direction. This data does appear
to show a connection between a measure of soil particle size
dispersion, D10/D50, and near-surface compressibility in
terms of mean E4. It also seems clear from the data that
the strength of this relationship is affected by whether
the site is classified as Type I, or as Type II.

If we are asked to provide a description of this
relationship, the functional forms presented in this
report provide models which best represent this set of
data. Variances are large enough here that if we had a
different set of data, other functional forms might fit
best.

Statistically, the use of hypothesis testing and
significance testing tools in lpoking at this data require
ever careful interpretation of what is really meant by
"gignificant®, "significantly different", and so on.

This is because although many statistical tests have
been reported, they all relate to essentially one set of
underlying data. Thus the various test results are not
independent of each other. We may be right about the
significance level for one test, but we are nct for the

significance levels in a set of tests.
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A continuing problem in this data analysis is the
relatively high standard deviation of E4 at Type I sites,
which are at the floor of the valley. 1In our initial work
on site classification we found the boring to boring variation
of B4 to be significantly different between the two groups
of sites, with standard deviation 1.62 at Type I sites, and
standard deviation 0.72 at Type II sites at higher elevations.
One might have expected more uniformity in the floor of the
valley; further, the E4 values are greater at Type II sites.
The work reported in this sectionhas shown that by using
D10/D50 we can account for enough variance at Type II sites
to reduce the standard deviation to the order of 0.62, but
at Type I sites, the standard deviation remained at the
order of 1.60. ‘Also, the gradation measures all show
greater variance among Type I sites than among Type II sites.

In the ﬁext sectiéﬁ w§ shall iook at relﬁtionships
between porosity and compressibility in undisturbed core

samples from Ralston Valley.

56

Ly AR B R TR AT b‘-‘ "' .‘-h
'-

'\} ARy R "‘\‘ X
54 y r AN S‘.’ ‘. ;, e A .'-."-\.'x A
T S e A S Y AT O

= v -

vy v -

a7

v T e L )

e~ -

-ra

v v




SECTION 6

POROSITY

Besides stress-strain curves and gradation, widely used
dimensions for soils include water content, wet density, dry
density, and porosity. All of these measures are somewhat

related; in the analysis reported here emphasis was placed

F G

on porosity as a measure of interest in its own right as

-

well as a potential predictor of near-surface compressibility.

S,
T A Y

Porosity Statistics

Porosity data from the 51 Ralston Valley borings appears

to have a symmetric distribution. This is shown by the

AL

stemleaf diagram of the empirical c.d.f. in Figure 8.

Table 20 shows means, variances, and standard@ deviations

for porosity according to site classification. Statistical

o
By B PP

tests were unable to find significant differences in the
variance of porosity among site types, although numerically,

there is greater variance among borings at Type I sites.

In terms of mean porosity; Type I and Type I1I sites appear

to be the same, but mean porosity at Type I and Type 1II sites
ig. significantly different at the 5% level. Thus we conclude

that porosity does differ according to site classification.
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Deviations for Porosity at Ralston

E
TABLE 20. Means, vVariances, and Standard i
Valley Sites.

n 'Héaﬁ ﬁhfianée Std. Dev,
All Sites 51 0.359 0.00166 0.0407
Type I Sites 34 0.353 0.00190 0.0436
Type II Sites 13 0.380 0.00087 . 0.0295
Type III Sites 4 0.340 0.00051 0.0227

'Rniattonshi l Between Pbrostt .ana Cbm resstbtlity Measures

 Sample correlation coefftcients Between porosity and

various-compressibility‘meesures»are shown in Table 21 both

Cd
br
’
-
Cd
v

for all sites and according te site classification. (As in
earlier studies as reported, we have omitted the Type III
site from correlation ahd regression analysis because of only
four observations;{ The correlation values for all sites in
general and for Type I sites in particular are all large
enough to be interesting, and if we assume normality, are
all statistically significant at 5% or better.

An unanticipated result here is the increase in
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TABLE 21. Sample Correlations Coefficients
for Porosity and Compressibility
Measures in Ralston Valley.

n E2 ""E4 ' E6 E4-E2 E6-E4
All sites 51 0.38 0.48 0.54 0.60 0.68
Type I Sites 34 0.38 0.48 0.54 0.61 0.70

Type II Sites 13 -0.13 -0.05 0.05 0.25 0.46

correlation as stress increases, from 2 to 6 MPa, with
further increases as we go to incremental changes E2-0,
E4-E2, E6-E4.

In attempting to relate various compressibility
measures to poreosity it was found that linear relationships
generally outperformed nonlinear ones. A summary of
statistical results from linear regression analysis is
given in Table 22 with scatter diagrams shown in the
Appendix. These results show that at Type I sites,
consideration of porosity not only significantly improves
estimation of mean compressibility measures, but also
reduces variance somewhat. No significant relationships
were found between near-surface compressibility and

porosity at Type II sites.
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Conclusions Regarding Porosity and Compressibility

In general, porosity appears to be related to near-
surface compressibility measures, and the relationship may
be reasonably represented as linear with positive slope.
This relationship appears primarily at Tvpe I sites
which are those on the floor of the valley with surficial
soil type 5Y. It was also observed that the greater the
'stress, the more the resulting strain relates to the
porosity of the specimen.

Porosity produced a stronger relationship to near-
surface compressibility than any tactoi considered in this
study except site classification.

The next and final section of this report provides

and oyveryiew of this analysis of data from Ralston Valley.
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SECTION 7

CONCLUSIONS REGARDING PREDICTION OF

NEAR~-SURFACE COMPRESSIBILITY

The work reported here represents a first look at the
geotechnical data base from Ralston Valley, Nevada, using
modern statistical and data-based modeling techniques. .The
objective has been that of seeking relationships permitting
prediction of subsurface soil properties for MX system desian,

so as to reduce the costs and time required for extensive

boring, core sampling, and laboratory analysis.
A capsule summary of our findings with data from ten-foot
depths at fifty-one borings in Ralston Valley might be given
by the following statements:
1. The strongest predictor of near-surface compressibility
that was found is a composite of site characteristics
obtainable from maps, together with surficial soil type.
(Sites on the valley floor with one soil tyve were found
to have significantly different stress-strain relationships
than sites above the valley floor with a different sur-
ficial soil type.)
2, Data that was examined from seismic surveys proved

to be unrelated to near-surface compressibility.
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3. When data from bag samples from ten-foot depths was
examined, it was found that a dispersion measure from the
gradation curve was strongly related to compressibility at
sites above the valley floor. The variance, rather than
the mean of particle size, was related to compressibility.
4. Porosity was found to be strongly related to .lear-

. surface compressibility at sites on the valley floor.
5. Pervasive throughout the analysis was the dependence
of results on site location (with surficial soil type),

and large residual variances in compressibility measures.

In terms of potential payoff in reducing costs for MX
siting, the results of these statistical analyses avpear promis-
ing, particularly since the best predictors found were those
which simply used data taken from maps. This first look at
the extensive Ralston Valley data base has identified factors
which are promising as predictors of near surface compressibility,
giving direction and focus to subsequent, more detailed work

with this data.

Perhaps the most important general result of this study is
its demonstration of the statistical modeling approach as a
viable and inexpensive means of acquiring necessary inputs for

the design of strategic structures.
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‘.‘ TABLE 23. List of Borings from which Data was used.
b “ i
‘3 RASY1 RCST1 RDU1
2 RAS5Y?2 RC5I2 RDU2
- RASY3 RCSI3 RDU3
_ RAS5Y4 RCSI4 RDU4
ey RB5Y1 RDSI1 RA4UL }
% RE5Y2 RDSI2 RA4U2 g
? RB5Y3 RD5I3 RA4U3
K RBSY4 RD5I4 RAAUA4
N RC5Y2 RAUL RB4U1
> RC5Y3 RAU2 RB4U2
> RC5Y4 RAU3 RB4U4
-~ RCS5Y1 RAU4 RC4U1
;; RCSY2 " RBUL RC4U2
[ RDSY3 RBU2 RC4U3
- RD5Y4 RBU3 RC4U4
Fl RASIL ; RCUL RD4UL
& RASI2 RCU2 RD4U2
o RASI4 RCU3 RD4U3
o RB5I2 RCU4 RD4U4

RB5I3
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TABLE 24. Compressibility Data

for Type I Sites

B2 E4 _E6 E4-E2 E6-E4
2.57 4,58 6,22 2.01 1,64
2.89 3.99 u.8 1.1 0.81
4.67 6.54 7.77 1.87 1,23
3.48 4,92 5,95 1,44 1,03
1.38 2.26 2.97 o0.88 0,71
4,24 5,74 6.75 1,5 1.01
2.98 4,55 65.86 1.57 1.31
1.58 2.29 2.89 0.71 0.6
1.37 2.15 2.82 0.78 0,67
2.84% 3.95 4.9 1,11 0.95
5.3 g8.04 9,78 2,74 1.74
2.68 4,09 5,37 1.41. 1,28
4.3 5.87 6,95 1.57 1.08
1.86 2.65 3.18 0.79 0.53
2.03 3,21 4,21 1,18 1
1.72 2.53 3,21 0.81 0.68
1.64 3.01 4,18 1.37 1.17
1.18 1.84 2.4 0.66 0.56
4,01 5.46- 6.56 1.45 1.1
3.63 4,84 5,75 1.21 0,91
3.08 4,49 5,53 1.41 1.04
2.97 4.28 5.2 1,31 0.92
2 2.84 3,43 0,84 0.59
1.93 2.8 3.44 0.87 0O.64
2.54 3,72 4,69 1.18 0,97
2.97 4,01 4,75 1.04 O.74
1.99 3.44 »,72 1.45 1.28
4.23 7.1 9,75 3.18 2,34
1.86 2,69 3,49 0.83 0.8
1.53 2.61 3,67 1.08 1,06
1.26 1.82 2,29 0.56 0,47
1 1.6 2.1 0.6 0.5
1.42 1,79 2,12 0.37 0.33
2,74 4,17 5,42 1,43 1.25
70

0.377
0.337
0.353
0.325
0.346
0.308
0.u428
0.379
0.346
0.394
0.4u8
0.397
0.3u43
0.261
0.333
0.378
0.355
0.283
0.398
0.324
0.347
0.33

0.28

0.324
0.371
0.334
0.341
0.u4304
0.352
0.398
0.319
0.34

0.316
0. uly
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"TABLE 25.Site Characteristics for Type I Sites

1689
1689
1689
1689’
1670
1670
1670
1597
1597
1597
1597
1707
1707
1707
1707
1585
1585
1585
1585
1667
1667
1667
1667
1625
1625
1625
1600
1600
1600
1600
1589
1589
1589
1589

% ir@g»

SLOPE EAC
2,27 18,288
2,27 18.288
2,27 18,288
2,27 18.288
1.34 9.1u44
1,34 9.144
1.34 9.1u4
1.58 12.192
1.58 12,192
1.58 12,192
1.58 12.192
1.07 6.096
1.07 6.096
1.07 6.096
1.07 6.096
0.43 0
0.43 0
0.43 0
0.u43 0
0.66 0
0.66 0
0.66 0
0.66 0

0.5 0

0.5 0

0.5 0
0.19 0
0.19 0
0.19 0
0.19 0
0.08 3.0u8
0.08 3.0u48
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TABLE 26.Compressibility Data for Type II Sites

,Eﬁ.

B4

'B6

E4-E2 E6-E4

2.95 4.24% 5,2 1.29 0.96
2.38 4,05 5.26 1.67 1.21
3.87 5.47 6.63 1.6 1.16
2,43 4,11 5.61 1.68 1.5
3.09 4,96 6.33 1.87 1.37
3.89 5.32 6.3 1,43 0.98
2.92 4,28 S5.27 1.36 0.99
3.93 5.2 6.12 1.27 0.92
2.87 4,23 §.27 1.36 1.04
2.55 4,16 5.38 1.61 1,22
2.2 3.43 4,58 1.23 1.15
3.09 4.85 6.22 1.76 1.37
4.85 6.71 7.98 1.86 1.27

TABLE 27.Site Characteristics for Type II Sites

ELEV
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TABLE 28.Compressibility Data for Type III Sites

- E6-E4

1.06 1.6 2,07 0.54 0.47
1.73 2.4 2.93 0.67 0.53
1,29 1,95 2,49 0,66 O0.54
1.212 1.93 2,51 0.72 0.58
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